language

The world’s biggest Unilever business moved to an ML-enabled forecasting

Client
Unilever
Industry
FMCG
Functional area
Sales Planning, ML-based Forecasting
Solution
ML
The world’s biggest Unilever business moved to an ML-enabled forecasting

“Moving to AI enabled technologies in cornerstone business processes like forecasting is a high priority in our business transformation agenda. With this project, we’ve come a long way and luckily are now at a stage of making an ML-enabled forecasting business as usual”.

Integrated Operations Lead, Unilever USA
01
BUSINESS CHALLENGE

Unilever USA is the biggest and most complex operating company in Unilever managing more than 200 brands. Having such a diverse portfolio which includes beauty and personal care products, food and refreshments, and home care categories, makes sales forecasting one of the most challenging and time-consuming processes in Unilever USA.

Forecasting thousands of SKUs by channels and customers has always been reliant on conventional statistical methods and the expertise of demand planners and sales managers, allowing for human error. This has resulted in fluctuating forecast accuracy and further negative financial implications.

Unilever USA is the biggest and most complex operating company in Unilever managing more than 200 brands. Having such a diverse portfolio which includes beauty and personal care products, food and refreshments, and home care categories, makes sales forecasting one of the most challenging and time-consuming processes in Unilever USA.

Forecasting thousands of SKUs by channels and customers has always been reliant on conventional statistical methods and the expertise of demand planners and sales managers, allowing for human error. This has resulted in fluctuating forecast accuracy and further negative financial implications.

02
SOLUTION

Machine learning enabled forecasting models were developed to transition a business wide statistical forecasting to a new process powered by the most advanced ML algorithms. Within the project, custom models were created to generate forecasts for forecasts for the US and world’s biggest retailers.

For each custom model, there was a unique set of input data including point-of-sale sales, inventory, promo investments, the number of retail stores, and national holidays. The richness of the internal and external input data helped algorithms learn quickly and generate a forecast with higher accuracy and less effort.
The Domo and Anaplan platforms were chosen to help accommodate the new forecasting process end-to-end for top customers. These platforms assist with everything from running the code for all models, disaggregating it and making corrections to visualizing the forecast for all end users. Having the brand-new ML forecast visualized on interactive dashboards allowed demand planners and analysts to understand what influences each forecast driver. This understanding sped up the adoption process significantly.

Apart from custom models, a universal ML baseline forecasting model was developed and launched to cover baseline forecasting processes across all categories and customers. Thanks to the special desegregation dashboard at Anaplan, demand planning managers can verify their newly created ML-baseline by drilling it down to specific SKUs separated by retailers, compare with previous years and much more.

Machine learning enabled forecasting models were developed to transition a business wide statistical forecasting to a new process powered by the most advanced ML algorithms. Within the project, custom models were created to generate forecasts for forecasts for the US and world’s biggest retailers.

For each custom model, there was a unique set of input data including point-of-sale sales, inventory, promo investments, the number of retail stores, and national holidays. The richness of the internal and external input data helped algorithms learn quickly and generate a forecast with higher accuracy and less effort.
The Domo and Anaplan platforms were chosen to help accommodate the new forecasting process end-to-end for top customers. These platforms assist with everything from running the code for all models, disaggregating it and making corrections to visualizing the forecast for all end users. Having the brand-new ML forecast visualized on interactive dashboards allowed demand planners and analysts to understand what influences each forecast driver. This understanding sped up the adoption process significantly.

Apart from custom models, a universal ML baseline forecasting model was developed and launched to cover baseline forecasting processes across all categories and customers. Thanks to the special desegregation dashboard at Anaplan, demand planning managers can verify their newly created ML-baseline by drilling it down to specific SKUs separated by retailers, compare with previous years and much more.

03
BUSINESS VALUE
  • Forecast accuracy increase by up to 20%.
  • 50% time efficiency improvement by demand planners.
  • A simplified S&OP process with an optimized demand review piece.
  • Forecast accuracy increase by up to 20%.
  • 50% time efficiency improvement by demand planners.
  • A simplified S&OP process with an optimized demand review piece.

GET IN TOUCH WITH US

Join us in LinkedIn

    ЕСТЬ ВОПРОС?

    Да, у меня есть вопрос!

    Имя
    Фамилия
    Страна
    Компания
    Позиция
    Email
    Телефон
    Было бы интересно узнать больше о следующем:

      ASK A QUESTION

      I have a question in mind

      First Name
      Last Name
      Country
      Company
      Position
      Email
      Phone
      I'm particularly interested in hearing more about:

        FRAGE STELLEN

        Ich habe eine spezielle Frage

        Vorname
        Nachname
        Land
        Firma
        Position
        Email
        Telefon
        Es wäre interessant, mehr über die folgenden Punkte zu erfahren:

          BİR SORU SORUN

          Aklımda bir soru var

          İlk isim
          Soyadı
          Ülke
          Şirket
          Pozisyon
          Email
          Telefon
          Özellikle şunun hakkında daha fazla şey duymak istiyorum:

            НАПИСАТЬ НАМ

            Имя
            Фамилия
            Компания
            Телефон
            e-mail
            комментарий

              CONTACT US

              FIRST NAME
              LAST NAME
              COMPANY
              PHONE
              e-mail
              COMMENTS

                SCHREIB UNS

                VORNAME
                NACHNAME
                UNTERNEHMEN
                TELEFON
                e-mail
                KOMMENTAR

                  BİZE YAZIN

                  İLK ADI
                  SOY İSİM
                  ŞİRKET
                  TELEFON
                  e-mail
                  YORUM

                    ЗАПРОСИТЬ ДЕМО

                    Хотелось бы посмотреть демо

                    Имя
                    Фамилия
                    Страна
                    Компания
                    Индустрия
                    Позиция
                    Email
                    Мне было бы интересно пообщаться и увидеть быструю демонстрацию:

                      BOOK A DEMO

                      I'd be interested in seeing a quick demo

                      First Name
                      Last Name
                      Country
                      Company
                      Industry
                      Position
                      Email
                      I'd be interested in having a chat and seeing a quick demo:

                        DEMO BUCHEN

                        Ich würde gerne eine kurze Demo sehen

                        Vorname
                        Nachname
                        Land
                        Firma
                        Industrie
                        Position
                        Email
                        Ich wäre an einem Gespräch und einer kurzen Demo interessiert:

                          DEMO İSTEYİN

                          Hızlı bir demo görmek isterim

                          İlk isim
                          Soyadı
                          Ülke
                          Şirket
                          Endüstri
                          Pozisyon
                          Email
                          Sohbet etmek ve hızlı bir demo görmek isterim: